
Rootkits
How deep the rabbit hole is?

Spletne urice Maribor, 28. januar 2025

Matej Kovačič, https://telefoncek.si

Rootkit: a malicious software designed to gain
unauthorized access to a computer system and hide
their presence.

Typically they enable remote file execution, system
configuration changes, can log keystrokes or network
activity and other forms of spying on user activities.
They can hide files, processes, disable security policies,
etc.

Bootkit:a specific type of rootkit, designed to infect a
computer and to load their malicious code into memory
before the operating system initializes.

By targeting the pre-boot environment, bootkits can
bypass standard security measures, remain hidden and
often have the ability to survive reinstallation of an
operating system.

Rootkits

The first bootkit was CIH (Chernobyl virus), which appeared in 1998. It
was developed by a Taiwanese student Chen Ing-hau (hence the name
CIH) and targeted Windows 9x systems. The malware corrupted the MBR
and overwrote parts of the BIOS, rendering the system unbootable.

The first bootkit

The technology of bootkits is often implemented in
various governmental and commercial remote
surveillance tools.

One of the reasons is, that bootkits can be used to
bypass encryption, typically by intercepting passwords
or encryption keys entered during boot.

● Joanna Rutkowska, Evil Maid proof-of-concept tool,
2009.

● Al-Kibar nuclear facility and
Operation Orchard (also
known as Operation Outside
the Box) on September 2007.

Evil Maid attack

Protection rings, also called hierarchical protection
domains, are mechanisms to protect
data and functionality from faults (by
improving fault tolerance) and
malicious behaviour.

Rings in computer systems are arranged in a hierarchy
from most privileged (most trusted, usually numbered
zero) to least privileged (least trusted, usually with the
highest ring number).

Modern operating systems are using only Ring 0 (kernel
mode) and Ring 3 (user mode).

However, there are even lower rings...

Rootkits and protection rings

Ring 3 rootkits, also called user mode rootkits are
running at the user-space level.

They run with the lowest level of privileges within the
operating system and can perform a damage at the
user space of the infected user.

Example, spyware running as a user program in Ring 3
should be prevented from turning on a web camera
without informing the user, since hardware access is
reserved for Ring 0 (kernel mode).

Ring 3 rootkits

Since Ring 3 rootkits do not have kernel-level access
they are easier to detect and remove.

Good strategies:

● application sandboxing (in order to minimize damage
within the infected user space) and

● regular backuping/snapshoting of the complete user
space in order to prevent complete data loss.

● using different isolated environments for different
tasks.

Ring 3 rootkits mitigation

Ring 0 rootkits, known also as kernel mode rootkits
reside in the core of the operating system (so called
kernel space).

They:

● have the highest level of privileges within the
operating system;

● could be deeply integrated into the operating system
(can hide files, processes, or network activity and
modify system calls);

● are usually hard to remove (requires specialized tools
or reinstalling the complete operating system).

Ring 0 rootkits

Good strategies against them:

● running the operating system in virtual compartment;

● use different isolated environments for different tasks;

● perform virtual machine level snapshots.

In that case virtualisation technology provides the
isolation of different virtual machines.

Ring 0 rootkits mitigation

QubesOS is a security focused desktop operating
system that provide security and segmentation of
applications through isolation with virtualization
services.

The user's digital life is divided into security domains
with different levels of trust. Unfortunately, QubesOS is
quite complex and is less suitable for regular users,
because it has quite steep learning curve.

QubesOS

And that is all...

...or not?

Ring -1 rootkits, also known as hypervisor rootkits
operate at the hypervisor level, below the operating
system.

Basically they create virtual environment and confine
operating system into it, while the compromised
operating system believes it is running directly on the
hardware.

They are extremely challenging to detect (and remove),
because they can manipulate the operating system
from outside its own context.

Ring -1 rootkits

Joanna Rutkowska, 2006: concept of a Ring-1
malware, called Blue Pill.

It exploited virtualization extension AMD-V.

Is able to place the operating system in a virtualized
environment without the operating system being aware
of it. OS thinks it is operating on bare-metal hardware,
in reality, it's running in a hypervisor and is being being
monitored and manipulated by the Blue Pill rootkit.

Other researchers have shown, that Intel VT-x
virtualisation extension could also be exploited.

BluePill

One solution against Ring-1 rootkits is to disable
hardware virtualization in BIOS/UEFI.

However in that case user will be limited running virtual
environments on their system.

Ring -1 rootkits mitigation

Another solution is to use trusted boot mechanisms.
Those mechanisms perform hypervisor integrity checks
(by verifying its cryptographic signature) and can help
to ensure that unauthorized hypervisors cannot load
during the boot process.

Ring -1 rootkits mitigation

Ring -2 rootkits are a mix of so called SMM rootkits
and BIOS/UEFI bootkits (also called UEFI implants).

Usually Ring-2 rootkits utilize SMM and UEFI
compromise. While SMM rootkits operate dynamically
within the CPU’s SMM environment they usually use
UEFI rootkit technology to embed malicious code in the
firmware layer to achieve persistence.

No surprise: SMM and UEFI contain security
vulnerabilities and are loaded with lot of bloat (for
instance some SMM's contained complete USB stack).

Ring -2 rootkits

SMM rootkits run at the System Management Mode
(SMM). SMM operates in a protected memory space
called SMRAM (System Management RAM), which is
inaccessible to the operating system and most security
tools.

SMM is the most privileged mode in the modern
x86_64 processors. SMM can directly interact with
hardware, it is bypassing the operating system and
hypervisors. Also, it cannot be interrupted by normal
hardware/software interrupts.

All this allows completely stealth code execution!

SMM rootkits

Shadow Walker by Sherri Sparks and Jamie Butler in
2005:

● was capable of hiding both its own code and changes
to operating system's components and was able to
fool both signature and heuristic based scans.

SMM rootkit by Shawn Embleton, Sherri Sparks and
Cliff Zou in 2008:

● a chipset level keylogger and a network backdoor
capable of directly interacting with the network card
to send logged keystrokes to a remote machine via
UDP.

SMM rootkit examples

Injecting shellcode from SMM to a Ring0/Ring3
context by Jussi Hietanen in 2020:

● capability to infect a Windows usermode process,
access the full memory space and persist between OS
reinstalls.

SMM rootkit examples

Another class of Ring -2 rootkits is called BIOS/UEFI
rootkits, because they specifically target the BIOS
(Basic Input/Output System) or its modern equivalent,
UEFI (Unified Extensible Firmware Interface).

● The first rootkit/bootkit targeting BIOS was CIH
(Chernobyl virus) in 1998.

● IceLord proof-of-concept bootkit (ICLord Bioskit) in
2007 demonstrated that BIOS rootkits were feasible
and powerful.

● Rakshasa by Jonathan Brossard in 2012 - proof-of-
concept firmware rootkit was able to persist in
UEFI/BIOS firmware.

BIOS/UEFI rootkits

● Probably the first known Ring -2 rootkit used in the
wild was Mebromi, discovered in 2011.

● Andrea Allievi who developed one of the first UEFI
bootkit concepts (for Windows 8) in 2012.In 2013,
Sebastien Kaczmarek from Quakerslabs presented
Dreamboot (probably based on Allievi’s work, also
targeting Windows 8).

BIOS/UEFI rootkits

Rootkit/bootkit technology is often used by government
spying tools and for cyberespionage.

● Hacking Team group tool Remote Control System
infected UEFI/BIOS to keep their malware persistent
(2015).

● FinSpy (also known as FinFisher or Wingbird), is also
used for cybersepionage, in 2021 they employed UEFI
bootkit technology.

● MoonBounce rootkit (discovered in 2021 and linked to
Chinese APT41 hacker group) injected its malicious
code into the SPI flash chip on computer
motherboard, targeting UEFI firmware.

BIOS/UEFI rootkits

● LoJax, discovered in 2018, embedded itself into UEFI
firmware to execute at system startup and was
operating in SMM, bypassing OS-level detection.
LoJax can persist in the UEFI even if the operating
system is reinstalled or its hard drives are replaced.
Used for track the system's location, remotely access
the system and install additional malware on it. LoJax
targeted organizations in the Balkans and countries in
Central and Eastern Europe.

BIOS/UEFI rootkits

UEFI bootkits are not exclusively targeting Windows.

In 2012 a security researcher Loukas K., "snare",
presented Mac EFI rootkit.

In 2017 Wikileaks published information about CIA's
Vault 7 hacking tools, containing Mac OS X EFI implant,
QuarkMatter.

QuarkMatter used an EFI driver stored on the EFI
system partition to provide persistence to an arbitrary
kernel implant.

BIOS/UEFI rootkits

● In 2024 the first UEFI bootkit designed for Linux
systems appeared, named Bootkitty. It was a proof of
concept tool that disables the kernel’s signature
verification feature to load unsigned boot code.

● BlackLotus (discovered in 2022) was first that
integrated Secure Boot bypass and is probably the
first UEFI rootkit that was "commercially" sold on
cybercrime forums. It also implemented several
detection evasion features, for instance code
obfuscation, anti-virtualization, disabling Windows
Defender antivirus software, bypassing User Account
Control (UAC), etc.

BIOS/UEFI rootkits

Secure Boot is a security standard to help make sure
that your PC boots using only software that is trusted
(by the PC manufacturer).

Unfortunately, Secure Boot can be bypassed:

● LogoFAIL attack;

● "Baton drop" Secure Boot bypass;

● Eclypsium bootloader;

● "Backdoor" vulnerability that allowed disabling Secure
Boot in Lenovo and Acer laptops (probably it was a
debug feature);

What about Secure Boot?

See the
problem
here?

● CVE-2024-7344, that enabled an attacker to load any
UEFI binary, even an unsigned one and regardless of
the UEFI Secure Boot state.

● in 2024 security researchers found out, that Secure
Boot was completely compromised on more than 200
device models sold by Acer, Dell, Gigabyte, Intel, and
Supermicro, because someone mistakenly published
the cryptographic key that forms the root-of-trust
anchor between the hardware device and the
firmware that runs on it (so called Platform Key).

What about Secure Boot?

Enable hardware protections like BIOS lock (a security
feature designed to prevent unauthorized access when
the computer is booting) and SMM lock (hardware
protection to prevent unauthorized access to SMRAM).

Using Secure Boot to prevent unauthorized firmware or
bootloader modifications is also an option, however
some rootkits (for instance BlackLotus and Bootkitty)
can bypass Secure Boot protection.

Prevent physical access to the system, because
BIOS/UEFI rootkits could also be installed via direct
hardware access (this requires special hardware device
called BIOS firmware programmer).

Ring -2 rootkits mitigation

Security researchers found several vulnerabilities in
closed source BIOS firmware code.

● LogoFAIL attack.

● Secure Boot and Intel Trusted Boot in traditional
BIOS'es are vulnerable to rollback attack.

● In 2024 security researchers found out, that Secure
Boot was completely compromised on more than
200 device models sold by Acer, Dell, Gigabyte, Intel,
and Supermicro, because someone mistakenly
published the cryptographic key that forms the root-
of-trust anchor between the hardware device and the
firmware that runs on it (so called platform key).

However...

● System Management RAM locking.

● SMM BIOS write protection.

● BIOS/UEFI lock.

● Secure Boot and Measured Boot to detect unauthorized
changes to firmware and SMM code (and also operating
system's boot scripts!).

● Utilizes external hardware security module for verification of
system integrity (firmware, kernel, and bootloader).

Fortunately...

Ring -3 rootkits operate in the Management Engine
(ME) or Platform Controller Hub (PCH) firmware, such
as Intel's Management Engine (ME) or AMD's Platform
Security Processor (PSP).

These are embedded microcontrollers within the CPU
chipset, designed for out-of-band system management
and security features. Since those rootkits reside in
firmware, they are also called firmware rootkits.

They can access host memory via DMA (direct memory
access), they can directly access network interface, can
boot the system from the emulated CDROM and are
active even in so called S3 sleep (System Power State
S3).

Ring -3 rootkits

Ring -3 rootkit concept was first presented by
Alexander Tereshkin and Rafal Wojtczuk in 2009.

They found out that Intel vPro chipsets had an
independent CPU, access to dedicated DRAM memory,
special interface to the network card and execution
environment called Management Engine (ME).

Intel Q35 chipset had a standalone web server.

So this is a little computer inside computer, that can
execute programs independently from the main CPU.

Ring -3 rootkits

Intel ME / Intel Active Management Technology (AMT)
is exploitable:

● In 2010 Vassilios Ververis described several
fundamental security weaknesses in Intel's AMT that
allow the attacker to remotely control the target
machine (over the Internet or a mesh networking)
and enables the installation and control of a botnet on
the hardware level.

● In 2017 Mark Ermolov and Maxim Goryachy presented
a talk titled How to Hack a Turned-Off Computer, or
Running Unsigned Code in Intel Management Engine,
where they have shown how to execute unsigned
code even on a powered-down system by exploiting
Intel ME.

Ring -3 rootkits

● "Silent Bob is Silent" - CVE 2017-5689 from 2017 -
allowed an attacker to gain system privileges remotely
(through the Internet). This vulnerability was present
in Intel CPUs from 2008 (9 years).

● In June 2017, the cybercrime group PLATINUM
started to exploit Intel's AMT Serial-over-LAN
functionality, which allows them to remotely access
computers, bypassing the host operating system and
its firewalls. The cybercrime group exploited AMT to
perform data exfiltration of stolen documents.

● in June 2022, the Wizard Spider ransomware group,
developed proof-of-concept code targeting Intel
firmware to carry out persistent, hard-to-detect
attacks.

Ring -3 rootkits

A possible mitigation (for specific Intel CPUs only) is to
disable ME functionality.

(Not completely, because this would destroy the CPU).

ME Cleaner:

● HECI method (soft-disabling; Host Embedded
Controller Interface), which is not fully trusted by the
security community and it also only partially disables
Intel ME.

● HAP disabling method - sets a special HAP bit that
acts like a kill-switch. This method completely turns
off all Intel ME parts that can be disabled.

Ring -3 rootkits mitigation

Ring -4 rootkits are more theoretical, however there
are some proofs that they can be successfully
deployed.

The term Ring -4 is used to describe emerging threats
in the privilege hierarchy below known Ring -3
systems.

Those rootkits would target components even deeper
within the system, such as the System on Chip (SoC) or
physical hardware devices themselves.

Ring -4 rootkits

Exploits on baseband processors:

● In 2011 Ralf-Philipp Weinmann has shown how to set
up fake base station, attract nearby phones to join the
fake network, where he was then able to inject a
malicious firmware update into the baseband
processor. His malicious firmware would then switched
on the phones’ auto-answer feature, which would
have let the researcher to silently dial into the
phone and remotely listen to nearby conversations.

● In 2019 two vulnerabilities called QualPwn (CVE-2019-
10538 and CVE-2019-10540) impacted devices with
Qualcomm chipset. They allowed the attacker to
remotely run code with kernel privileges on the
target device. Attack was carried out through WiFi.

Ring -4 rootkits

Exploits on baseband processors:

● Simjacker vulnerability (2019) allows the attacker to
send a special crafted SMS to the victim's device,
which instructed the SIM card within the phone to
take over the mobile phone and perform sensitive
commands. The Simjacker attack was exploited by
surveillance companies for cyberespionage operations.

Ring -4 rootkits

Exploits on storage controllers:

● Jeroen Domburg (in 2013) - malware on a hard disk
controller that was able to modify data when reading
from the hard disk. He demonstrated how to "inject"
replacement password to a target system. Malware is
activated with »magic string«.

● Marcus Hutchins (in 2015), who created a firmware
rootkit that could be stored on hard drive’s memory
chip, and can intercept and modify data being sent
back to the host computer. This allows the rootkit to
trick the host system into executing arbitrary code.

● IRATEMONK (NSA’s exploit tool) provided software
application persistence by implanting the malware in
the hard drive firmware to gain execution through
Master Boot Record (MBR) substitution.

Ring -4 rootkits

Exploits on network interface cards:

● Arrigo Triulzi, 2008, Project Maux Mk.II. Proof-of-
concept hardware rootkit on a
network card, called NIC SSH.
The tool allows him to connect
directly to compromised network,
completely bypassing the operating
system (and the firewall) to access
the computer.

Other exploits on hardware components:

● Firewire interface,

● malware on a Apple Aluminium Keyboard,

● malware on a PCI card, etc.

Ring -4 rootkits

Depends on a type of a component that rootkit resides
on.

In general:

● firmware validation (not feasible in practice),

● secure supply chain practices (also not feasible in
practice),

● physical security (also not always feasible in practice),

● hardware components with open source and verified
firmware (Guess what? Also not really feasible in
practice).

Ring -4 rootkits mitigation

● Exploits on baseband processors could be mitigated by
baseband isolation.

● Blob-free network cards for computers (non-
modifiable pre-installed firmware that is part of the
hardware).

● Malware on storage controllers could be defeated by
software level full disk encryption (+data integrity
algorithms).

● Keeping the operating system secure, can also help
defending against firmware attacks (because malware
can not communicate with host OS).

● For other hardware components the threat level
should be evaluated.

Ring -4 rootkits mitigation

Can we go deeper?

Illinois Malicious Processor (presented in 2008), proof-
of-concept research project demonstrating how
malicious functionality can be embedded directly into a
processor's design.

● an attacker can design a hardware to support general
purpose attacks; malicious hardware design can
bypass traditional software-based security
mechanisms.

● Illinois Malicious Processor included a hidden
operational mode, that was designed to be
undetectable by traditional hardware and software
monitoring tools. This mode allows the malicious
processor to execute hidden instructions and access
reserved parts of the cache memory for storing attack
payloads.

Processors with malicious design

CPU manufacturing process:
➔ Silicon is purified to a high degree (99.9999%).

➔ It is sliced into thin wafers.

➔ Photolithographic and chemical processes are used to create
the actual circuit on the silicon wafer.

➔ The layer of photoresist (light-sensitive material) is applied to
the silicon wafer

➔ The circuit is illuminated with UV light through a photomask
with a picture of a circuit.

➔ Illuminated photoresist is hardened, while other parts of
photoresist could be removed. This creates image of a circuit
on the silicon wafer.

➔ Exposed silicon is then etched away (chemically or with
plasma).

Processors with malicious manufacturing

➔ Doping. Doping refers to the process of intentionally
introducing impurities into a semiconductor to modify its
electrical properties (create areas that can conduct or block
electricity).

➔ If elements of chemical group V (such as phosphorus), which
have more electrons than silicon, are added to the silicon, the
result is weakly bound and very mobile electrons. We get an
n-type semiconductor.

➔ If we dope silicon with elements chemical of group III (such
as boron), we create a deficit of electrons, so we get p-type
semiconductors.

➔ Finally, thin layers of materials like copper, aluminium, or
insulating oxides are deposited on the wafer in order to get the
multi-layered structure of the chip.

Processors with malicious manufacturing

Theoretical attack.

Theoretically doping could be used to introduce
hardware vulnerabilities or even inject malware-like
behaviour into a chip.

For instance, malicious actor could create regions in the
chip with altered electrical properties. This might cause
the chip to malfunction, leak data, or execute
unintended instructions under specific conditions.

Doping could also be used to create hidden circuits that
are not part of the original design. That would in fact
create hardware Trojan on a chip.

Processors with malicious manufacturing

Practical attack.

In 2013 researchers have shown that hardware Trojans
can be implemented completely undetectably on
consumer grade processors:

● Malformed random number generator: they were
able to arbitrarily reduce the range of random
numbers from 2^128 to 2^32, the RNG passed the
NIST test.

● malicious hardware implementation of the AES
encryption functions, so that they were not resistant
to a side channel attack any more. But - integrated
circuit still performs its task - protecting against the
all other side channel attacks. No functional testing
can detect a hardware Trojan horse.

Processors with malicious manufacturing

Practical attack.

Those malicious hardware modifications could not be
detected neither by optical inspection (the metal and
polysilicon wiring of the modified chip is unchanged), or
by performing a BIST test (build-in-self-test, a
hardware self-testing process), or by checking with a
reference chip, so called gold chip.

Also.

A similar process is already commercially used to
obfuscate the operation of integrated circuits!

Processors with malicious manufacturing

General mitigation strategies:

● secure supply chains

● third-party verification

In reality: not really feasible.

However:

● external random number generators;

● hardware security modules for handling encryption
keys.

Mitigation?

What can be done?

Sandboxing and
isolated virtual
environments

Virtual machine
level snapshots

Dasharo UEFI with
external HSM

Disabled
Management

Engine

Software level full
disk encryption

External
HSM/RNG

OSS/without
blobs hardware

Software, firmware
and hardware
transparency

Secure
supply
chains

Physical
security

Security hardening

Countermeasures?

Matej Kovačič
https://telefoncek.si

Questions?

Matej Kovačič. 2022. Crash course on
cybersecurity: a manual for surviving in a
networked world. ISBN: 978-961-7025-
24-8 (PDF)

The book tries to explain the
complex area of cybersecurity in
an understandable way, to help to
grasp the essential information on
how to protect yourself and/or
your company from cyberattacks
and to provide technologically
neutral advice for the
implementation of protection
against cyberattacks.

The book is available under a
Creative Commons license and
PDF is freely available online at
<https://telefoncek.si>.

Some further reading...

	Prosojnica 1
	Prosojnica 2
	Prosojnica 3
	Prosojnica 4
	Prosojnica 5
	Prosojnica 6
	Prosojnica 7
	Prosojnica 8
	Prosojnica 9
	Prosojnica 10
	Prosojnica 11
	Prosojnica 12
	Prosojnica 13
	Prosojnica 14
	Prosojnica 15
	Prosojnica 16
	Prosojnica 17
	Prosojnica 18
	Prosojnica 19
	Prosojnica 20
	Prosojnica 21
	Prosojnica 22
	Prosojnica 23
	Prosojnica 24
	Prosojnica 25
	Prosojnica 26
	Prosojnica 27
	Prosojnica 28
	Prosojnica 29
	Prosojnica 30
	Prosojnica 31
	Prosojnica 32
	Prosojnica 33
	Prosojnica 34
	Prosojnica 35
	Prosojnica 36
	Prosojnica 37
	Prosojnica 38
	Prosojnica 39
	Prosojnica 40
	Prosojnica 41
	Prosojnica 42
	Prosojnica 43
	Prosojnica 44
	Prosojnica 45
	Prosojnica 46
	Prosojnica 47
	Prosojnica 48
	Prosojnica 49
	Prosojnica 50
	Prosojnica 51
	Prosojnica 52
	Prosojnica 53
	Prosojnica 54

